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ABSTRACT

‘N
A comparison is made between several different methods for

calculating energy transport within a wave field. Two Langevin

techniques are developed. The first is based on the fluctuation—

dissipation theorem and provides relaxation rates v~ and a 
(F)

transport equation. The second method is an application of

the Krylov—Bogoliubov—Mitropolsky perturbation theory and pro-

vides a Langevin rate constant v at lowest order . The two
1~~

formulations are shown to be closely related to the radiative

transfer (Boltzmann ) equation whose rat e is the difference

between and ‘

~~~~~

. Specific application of the Langevin

methods is to internal waves in the ocean . Computations show

that the GM—76 spectrum is approximately an equilibrium

spectrum except for frequencies near the inertial frequency and

at the lowest vertical modenumbers . The sensitivity of Vp 1 ~ 1

and to spectral form is also discussed. Simple analytic

expressionz for the rates are derived for the induced diffusion ,

elastic scattering , and parametric subharmoriic instability

mechanisms . Only the first of these mechanisms is ever of much

numerical significance. Finally , net energy flow in t1~~ non—

equilibrium portion of the GM—76 spectrum is discussed.
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1. INTRODUCTION

Nonlinear energy transfer mechanisms within the oceanic internal

wave field have been studied by Olbera [1976 ] and MeComas and Bretherton

[ 1977]. These authors used a radiative transfer equation [Ha aeelmann,

1966 , 1967 ] for their computations . The radiative transfer (or Boltzinann)

equation governs the evolution of wave action spectra ensemble averaged.

over many realizations of the wave field. Derivation of this equation

from the fluid equations requires several approximations:

(a) Nonlinearities are assumed “weak ,” and only lowest order

(quadratic for the case of internal waves) nonlinear terms are retained

in the equations of motion.

(b) Two—time perturbation methods are used; the “fast time”

corresponds to linear wave periods and the “slow time” to nonlinear

interaction timescales.

(c) Spatial homogeneity in any horizontal plane is assumed. This

allows simplification of second moments of wave amplitudes.

4
( d )  A closure approximation is made by the discard of fourth and.

higher order cumulants.

In the present study we compare several different techniques for

calculating energy transport within the internal wave field. The dynamical

r
~,i
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equations [Meiss , Ponrphrey, and Watson; 1979 , henceforth referred to as I]

are derived using approximation (a) and describe nonlinear interaction

of the linear normal modes of the wave field. Here we use the Garrett—

Munk exponential profile for the V~isè~l~ frequency and the WKB approxi—

ination to calculate the vertical modefunctions (OThers [1976 ] and

MoComas and Bretherton [1977] have used a constant V~tis~.lè~ profile).

Two Langevin equation techniques are developed in this paper to study the

dynamics of the system derived in I (Langevin methods have been used by

Ho 1Z.oway and Hendershott [1977] to discuss Rossby waves).

The first Langevin method is based on the fluctuation—dissipation

theorem [ Lax, 1960, 1966]. This method provides relaxation rates and

i transport equation, and depends rather little on dynamics. It assumes

linear relaxation to a known equilibrium state and also requires approxi— .)

mations (b), (c) and (d). For the “known equilbrium state,” we choose

a set of Garrett—Munk related spectra, with the “GM—76” spectrum

[ Cairns and WiZlia ~ns , 1976 ] as our reference standard .

To obtain the second form of the Langevin equation we use approxi-

mation (b) in the form of the Krylov—Bogoliubov.-Mitropolsky perturbation

method. [Bogoliubov arid Mitropoisky , 1961]. Approximation ( d )  is not

required to calculate the Langevin rate constant with this procedure.

We shall show in Section 3 that the two Langevin formulations are

closely related to the radiative transfer equation. For fluctuations near

a true equilibrium state the two formulations are in agreement. In this

case the transport equation obtained from the Langevin equation is

identical in form with that used by Olbers [1976 ] and by McComas and L

Bretherton [1977) .
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The Langevin method leads to a decay rate v(k) for the autocorrelation

of the amplitude for a linear internal wave labelled as “k.” When calcu-

lated using the fluctuation—dissipation theorem, we call this v~(k).

The value obtained from perturbation theory is written as v~ (k ) .  The

radiative transfer equation used by Olbers [1976] and by McComas and

Bretherton [1977] for the action density is of the form

d
dt <ak> = 2 vB(k) <a

k>

where

\)B (k )  v~(k) — v~(k)

It is convenient to think of Vp as representing the rate of energy input

to mode k from the “noise field” of the wave system and to think of

Vp as describing a rate of energy loss from mode k.

McComas [1978] reported numerical experiments in which he intro-

duced small distortions in the GM—76 spectrum and computed the relaxation

to “equilibrium.” We give an analytic description of this in Section 3

and show that the Langevin autocorrelation decay rate v~ (k )  also determines

the rat e of return to equilibrium.

Numerical calculations of Vp and Vp are presented in Section 5. We

shall see that for the GM—76 spectrum , except for frequencies near the

inertial frequency and at the lowest vertical mode numbers, is

from one to three orders of magnitude smaller than (or V p ) .  We

_ _ _ _ _ _ _ _ _ _  
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thus find precise numerical confirmation of the conclusion of

MoComas and Bretherton [1977] (who calculate only V B
) that GM-76

is approximately an equilibrium spectrum.

The sensitivity of VF and v~, to spectral form is also discussed

in Section 5 for a class of GM—76 type spectra. Not surprisingly,

in the equilibrium region where V B 
is a small difference between two

much larger quantities, the values of VB are rather sensitive to spectral

shape.

McCornas and Bretherton [1977] describe three limiting mechanisms

for energy transfer. They call these induced diffusion, elastic scattering

and parametric subharmonic instability. In Section 6 we present simple

analytic expressions for VF and for each of these mechanisms. We

show from these expressions that GM—76 represents an equilibrium spectrum,

except at the lowest frequencies and lowest vertical mode numbers , with

respect to both induced diffusion and elastic scattering. (For the case

of induced diffusion this was noted by McComas and Bretherton [1977] and

was implied more generally from their numerical calculations.)

We show that the elastic scattering and parametric subharmonic

instability mechanisms are never of much numerical significance for the

GM—76 spectrum. For frequencies greater than three times the inertial

frequency the analytic expressions obtained from induced diffusion for

both VF 
and agree well with the numerically calculated values for

these quantities.

Net energy flow in the non—equilibrium portion of the GM—76 spectrum

is discussed in Section 7. Our conclusions are generally consistent with

those of OThers [1976] and of McCortias and Bretherton [1977] that energy
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is transferred from the low vertical mode number regime into that of high

vertical mode numbers and near inertial frequencies. Since net energy

flow is determined by V
B~ 

the details depend relatively sensitively on

the assumed spectrum.

The Langevin rate constants discussed here govern relaxation processes

in the wave field and also immediately yield values for the more frequently

calculated Boltzmann constant VB. The simple analytic approximations for

these rat e constants given in this paper should be adequat e for applications

to internal wave transport processes .

4
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2. THE DYNAMICAL MODEL

A general description of internal wave phenomena and theory is

given by Philli ps [1977]. The detailed description of the specific

dynamical model used here is given in I. A rectangular coordinate

system is chosen with the x—y plane tangent (locally) to the ocean

surface. The bottom is assumed horizontal at z = -H. The Garrett—Munk

exponential V~.isäl~ profile is used in this paper:

N ( z )  = N0 exp (z/ B ) . (1)

Dimensional quantities are N = 5.2 (io Y 3 rad/sec , B = 1.2 Icn and the

surface fluid density p = ~(o). Thecoriolis frequency is assumed

vertical with magnitude

(2)

f = 7.3 (1OY 5 rad/sec = .Olb N

corresponding to 300 latitude. Vectors , x = (x ,y), are two—dimensional

in the horizontal plane.

The vertical displacement of a Lagrangian fluid element was written

in I as

~3
(x ,z,t) = Re [Y(x ,z,t)],

a. ( t ) ik . x
Y(x ,z ,t )  = I N / ~ ~ k 

w, ( z )  e
c z 1  k

Equation (3) is a Fourier expansion in an ocean of rectangular area 
~

- .-  - . 
_ ._~ c_~z _ _ _ _  -~~~~ - --.—— 
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in terms of horizontal wavenumbers k. The linear vertical modefunctions,

w
k
(z), satisfy the eigenvalue equation

r2  2
I N —

~~ (ki
d 1 d 21 a

p 
~~~

— W
k i + 

~~ I 2 2 Wk 
=

w ( k) — rL a

~ (k)>O,a

w (0) = ~~ (-H ) = 0. (ii )
kc*

Here ~~(k) is the angular frequency of a linear internal wave with

integer vertical modenumber a.

The amplitudes a
~K 

are dimensionless wave slope variables and satisfy

[ I , eq. 2.23]

+ iWa~ = 
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 

. ( 5 )
L ,m . .. .. ..

Here we have used abbreviated labels, writing k,i,m for (k,~ ) ,  (
~~,8),

and (m,y) respectively. Explicit expressions for the “G” coupling

coefficients in ( 5 )  were given in I. They contain integrals over the

product of three modefunctions W (see appendix A) as well as factors

determined by the geometry of the interacting triad .

Wave action per unit area is expressed in terms of the slope

variables as [I, eq. 2.21]

2

~~NJ = N B 3 a o  (6)
kcz ~ ~ ~~

_f
~ 

2(kB)2
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The Boussinesq approximation has not been used to derive equations

(3), () 4 ) and (5). This approximation entails the neglect of the term

dW
~~ ka . . . .
dz dz 

in (u). In Appendix A it is shown to have a negligible

effect on the coupling coefficients in ( 5 ) .  We shall therefore make

this simplifying approximation for our subsequent discussion .

Following Garrett and Munk [ 1975,  1979 ] we use the WKB approximation

to solve (~4 ) .  This appears reasonably valid for ci~~2 (results for a 1

are at best qualitative but will be included for completeness). We also

use their dispersion relation

/
/ kBN \

w
2(k) = f2 + 1 ° I , ( 7)
a (a—¼)ir

valid when w (k)<<N (and assumed valid in this paper for w (k)<N
0

/ 3 ) .

The power spectral density (PSD) of vertical displacement is written as

~~k,a,z) and normalized so that

= ~ fd 2k ~(k,a,z)  , ( 8 )
c~ l

where “ < >“ represents an ensemble average over realizations of the internal

wave field. We shall require only the spectrum ~p (k ,a ) extrapolated to

the surface for which = = ( T .3 m ) 2 . From equations ( 1) ,  ( 3 ) ,

(6 ) , (7) and the normalization of the eigenfunctions Wk (Appendix A),

we see that

= —j . - 

. (9)
2k2
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In this paper we adopt a PSD related to the Garrett—Munk form [ Garrett

and Munk, 1975, 1979], with

1 
(kB )a~~~

= 
~~ ~~~ 

<(~0
B) ~ > p/2 + 1

+ 1.9 (l01 3a2 ] [ 1 + ( a/ 3) t]

(10)

where p is the “wavenunber slope” and t is the “modenumber slope.” The

GM—76 spectrum [Cairns w~ Willi~ns, 1976] with p 2 , t=2, and N22 
= .013

is chosen as our “standard.”

_ _ _ _ _ _  _ _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

IIIL ~~~~ 
-- 4 . . -. - -

~~~~~~~~~- -~ __ i -~~~~~~~~~~~~~ 

... 
___________ Ti~~

- • .~—



—11—

3. RELAXATION RATES

In this section we discuss and relate three different methods for

calculating relaxation rates in a random wave field. We fix attention

on a single, definite internal wave mode , say that labelled (k ,c z ) .  This

is the “test wave,” and we study its interaction with the ambient wave—

field. Averages are denoted “ < > “ and are over an ensemble of states

of the ambient field. We suppose that the test wave always has a definite

amplitude at some initial time, say t=O. As t-~ there will be no difference

between this ensemble and an ensemble of states of the entire internal

wave field (including the test wave).

A. Fluctuation Dissipation Theorem

We cast the equations of motion ( 5 )  for the test wave as a Langevin

equation by representing the nonlinear terms on the right hand side by

a random force R(t) (for convenience we temporarily drop the mode labels

(k,a)) :

+ iwa = ~(t) . ( I I )

From this point of view the test wave is driven by the ambient waves

which act as an “equilibriun heat bath. ” It is convenient to transform

variables , defining

_____________________________________________________ - - -~~-—-—~~~~~~
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b(t) = e~~
t 
a(t) ; (12)

so that ( 11) becomes

b = e~~t R R ( t )  . (13)

Following the conventional argument [ Lax , 1960 , 1966 ] we suppose that

at t 0 , b has the definite value b ( 0 ) .  The mean of b , averaged over the

ambient ensemble , obeys the equation

<b> = < R ( t ) >

It is anticipated that as t-~ o , <b> -
~ 0. This leads to a reasonable

postulate for the form of R:

R ( t )  = — Vb(t) + F ( t )  ,

<F> = 0 . (l~ )

Here v is the Langevin relaxation rate (assumed real since any imaginary

part may be removed by a transformation of the form (12)).

From assumption (i!~) , equation (13) become s

b + v b = F ( t )  (15)

~~~~~~~~~~~~~~~~~~~ 
- .  - r’~-
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from which it follows that

< b ( t ) >  = b ( 0 )  e
_Vt 

, (16)

To develop the fluctuation dissipation theorem we assume

lim 
Ib(t)J

2> = 
~ , (17)

t-*o’,

a constant, equilibrium value. (Since the hamiltonian from which equation

( 5 )  was derived has no lower bound in energy , a true equilibrium in the

thermodyna~nic sense does not exist. However, large amplitude fluctuations

are sufficiently rare that we can ignore this problem. Note the analogy with

the theory of low—lying Stark states of hydrogen.) It is, of course,

of interest to determine if the Garrett—Munk PSD (10) corresponds to

this equilibrium, and this is one of the tasks for the computations in

Sec. 5.

Considerable simplification results by assuming 5—correlation of the

noise

~ 2D ~(t-t’) .

Numer ical invest igations descr ibed lat er indic at e that decorrelation is

sufficiently rapid that equation (18) is a good approximation for our

application . It is easy to show that D is real .

.i.
~~ - —~~~~~

-
~~~~~~~~~~~~ - r~~

- -
~ ~~~

- - .
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Integration of (15) using assumptions (17 ) and (18 ) and restoring

mode labels yields the fluctuation—dissipation result

D(k,cz)
VF (k ,a) = , (l9a)

- ka

where the subscript “F” indicates that this relaxation rate is derived.

by the fluctuation—dissipation method.

For future comparison with the radiative transfer equation we

generalize (l9a) to define a rate coefficient

D(k,a)
v~(k,a) = 

<l5 I~a I
2> 

( l9b )

where <~ a,~~ j 2> does not necessarily represent an “equilibrium” value .

To evaluate D we use the linear approximation for the ambient field

amplitudes on the right hand side of (5)

-iu) t
a~~(t) = a~~(0) e

We also use the cumulant discard approximation to reduce fourth moments

to second moments. Evaluation is straightforward , giving

D(k,a) = -~~- I <F(t)F*(0)> dt

kZ2
= 

~ {1G I 
~k+i—m 

6 a~~~~~y
)

9.,m

+ 210k 1
2 6 6(w —w -w )} < Ia 2> <

~ 1
2> . (20 )

Lm k—9,—m ci ~ y icy

t I i

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ !. . —~~~~~~~~~~~~ ~~~: ~

- 
-~~~~~~--

-
~~~~~~~~ . ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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For a large ocean area we may replace wavenumber suns by integrals

with the substitution

E

~
÷_j fd~~

and use equations (20 )  and (9) to re—write ( l9b ) :

cF(k,a) = 2ir ~ fd
2H2m { IG~~I 2 6(k+9.._rn ) 6 ( w

a
+w

~
_w

y
)

8 ,y

+ 2 IG
~mI

2 6 (k_
~

_ r n ) 6 ( wa
_w

8
_wy ) } £2~

2

- 
. (21)

It is clear that Vp is a positive quantity.

B. Perturbation Method

The Kry lov-Bogoliubov—Mitropo lsky [1961] two—time perturbation method

provides an alternative means of obtaining a Langevin equation of the

form ( 15) [see e.g. Case , 1966]. For the lowest order perturbation

calculation , the cumulant discard assumption is not required since the

test wave is a sure quantity at t 0  under the averages. Using an

4 adiabatic “switch on” in the remote past of the right hand side of (5),

we obtain a complex “frequency shift”

1

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4 ~~~~~~~~~ ___~~~~~~~~~~~~~~~ -_ - -~ - - ~~~~~ ~~~~~ 
—

~~
- 

~
- —- — -- 

~
--.“- —- 

- 
-
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G
k

~ Gm

v(k,ci) = - 

~~~
(+) ~~m f W a~~~~ 

6k~~

G
km

G~~~~~ 2Gk 0mi

+ 
w -~~+~~+ifl 

6k~~+rn 
+ 

~~~~~~~~~~~~~~~~ 
6k~~~ rn < Ia

~8
(0)I 2>

(22)

The real part of this is the relaxation rate

v~(k,a) = Re[v(k,a)]

= — 2it fd
2
~d
2m t2G~

Z G~k 6 (k — r n ) 6 ( w5+w~~ w1
)

km mk*
+ G 0 c5(k—~.+m)6(~ -w ~w )

2.. 2.. a 
~ 

y

+ 2 
~~~~~ 

6(k_t_
~ )6(wa

_w
~
_w
y)} ~

2
~(L 8) . (23)

Here we have used the standard relation

Re [ lirn —b—. I = irc5 (x)

and also expression (9) for the PSD. In Appendix (B), equation (23) is re—

written in a form which shows that the first and last terms are positive

while the second term is negative.

.‘~

L.L~ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _-

~~~

_

~~~~~~~~~
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~~~~ 

~~~~ 
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C. Radiative Transfer Equation

The radiative transfer or Boltzmann equation has been used by

Olbers [1976] and McComas and Bretherton [1977] to describe nonlinear

internal wave interactions. In this method , the equations of motion

(5) are used to obtain an equation for d<Ia~j
2>/dt [see, for example ,

Davidson, 1972] in terms of <a~a~a*> , etc. Equations for the rate of

change of these third order moments involve fourth moments. Closure

results from discard of fourth order cumu.lants, leaving second order

moments. Use of the homogeneity assumption allows expression of these

in terms of the PSD. Finally , first order perturbation theory is used

to integrate the equations for <akaia*> . The result of all this is the

transport equation

~~ 
<kjç aI~> = 2vB (k ,a) <k~a l2> (2l~a)

where

V
B

V
F

_ V
p . ( 2kb )

The expression (21 ) and (23 )  for VF and v~ are to be used here . Symmetry

properties of the 0—coefficients may be used to rewrite (2 1k ) in precisely

the form given by Olbers [1976] and MoComas and Bretherton [l977~
• ( Appendix B ) .

p Equation (2i~) shows the relationship of the Boltzmann transport

equation to the two versions of the Langevin description . We shall see

in the next section that (2 1~) may also be derived directly from the Langeviri

equations.

I
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In the application of the fluctuation—dissipation theorem , we were

required to assume that the < I a ,~ I 2> corresponded to the equilibrium

state This was not , of course , used to obtain equations (23 )  and

(2 1~) ,  which result fr om dynamical equations . We see from (2 1~) ,  however ,

tnat if < I 9
~a I2> = ak~

, then V3(k,a )  = 0 and

v~~(k,a) = v~~(k,a) = v~ (k ,ct ) . (25)

The two forms of the Langevin equation and the transport equation (24 )

are then consistent . We have seen that the quantity ‘
~F is always positive .

Evidently , for an equilibrium spectrum v~, must also be positive although

this is not guaranteed since the full expression (23 )  for Vp is not

positive definite.

When the ambient field is at (or nearly at) equilibrium, so

the fluctuation—dissipation “noise ” D tends to excite the mode (k ,a)

at a rate VF (or ~~~ 
Energy is lost to the ambient field at the rat e

Vp. To illustrate the implications of this, suppose that our test wave

has arbitrary initial amplitude , but all other mode s are in equilibrium.

We can then use ( l9b ) to integrate (2 14 ) :

—2V t -.2v t
< I a ~~( t ) I 2> = <~~ ç~(0)~

2> e + ~~ [l~e F ) . (26)

The equilibrium value is evidently

<I
~~a I = 

Vp(1~~ L)

I
~~~~~~~~~~~~~~ 

-- - .—- -
~~~~~~~~~~~ - -~~ ~~~~~• ~~~~~~~~~~~~~~~~~~~~~~ 

- .
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as required by the fluctuation—dissipation theorem and (25). Now,

from (16), we obtain

_v t_iw xt
<
~~~~

(t )  a~~(0)> = < I a ,Ka ( 0 ) 1 2> e F a (27)

So from (26), the time scale for <Ia
~~I

2> to reach equilibrium is

determined by ~~~~ while the autocorrelation function (27) decay rate

is determined by V
F.

The dynamical calculations reported in I, corresponding to numerical

integration of equations (5) seem to be reasonably consistent with (26):

A test wave of initially small amplitude was found to grow to the GM—76

value in roughly the expected time. It remained at this level as long as

the calculation was continued.

In the above discussion we assume that there exists an equilibrium

solution to (214). For this to have physical interest the solution should

correspond, to some extent , to observed internal wave spectra. In

Section 5 we shall present computed values of and V~~ for a class of

G!~I spectra and conclude as did McComas and Bretherton [1977 1 that

GM—76 is nearly an equilibrium spectrum , except for frequencies close

to the inertial frequency and for the lowest mode numbers. Within

the “equilibrium range” we will see that V
3 
may be several orders of

magnitude smaller than 
~~~~
,, and therefore tends to be quite sensitive

to details of the spectrum.

~ i

i

_ _ _ _ _ _ _ _ _ _ _ _
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14. F0I~~ER-PLANCK EQUATION

The assumption that the “noise” term in (15) represents a

Markoff process, fluctuating rapidly on the time scale v~~, permits one

to derive a Fokker—Planck equation for the probability distribution of

the amplitude b [ Chandrasekhar , 19143; Wang and Uhlenbeck , 1945]. To

obtain this, we first write b in terms of its real and imaginary parts ,

b x + i y

The probability density for x and y at time t is written as P(x,y,t).

The Fokker—Planck equation is obtained from (15):

a a
= ~~ [V p x ?] + .

~~~~~ [V ~ YP]

2 2
+ i-f. + 

~~~~~~~~ 
[
~~~

] , (28)
ax

Here D is the quantity defined by (20). An equation of evolution for

the wave amplitude intensity

< 1a I 2> f (x
2 

+ y
2 ) P dxdy

may be obtained immediately from (28):

• 1 d 2 2
~~ 

<ja
k i > = 2V

F(k,a) [Ok 
— < Ia, !  >1 . (29)

• - —- ,• ~~~~~ --~-—-- -~ . -~ ~- ~~~~~~~~~~ r—’~’
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This is precisely equivalent to (214) if there exists an equilibrium

spectrum o, since then v~, = V~~. In Appendix B (29) is rewritten to

include the effects of inhomogeneous media.

We have now introduced three different rate constants, ~~~~ Vp , and

VB
. It is to be observed from equations (214), (26), (27) and (29) that

describes the net rate of transfer of action (or energy), whereas

(or V
F

) represents a relaxation rate.

•1
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5. CO~~UTATIONS AND RESULTS

In this section we evaluate (21) and (23) for and for given

test wave parameters (wavenumber , frequency and niodenumber). The co-

efficients 0 depend on integrals over WKB modefunctions Wk . In Appendix A

we show that to a good approximation the modenumber dependence of these

integrals can be replaced by a delta function condition (corresponding

to approximate vertical wavenumber conservation). This greatly simplifies

the evaluation of the decay rates since use of the delta functions reduce

their calculation to a single sum over niodenumber (selects individual

frequency resonance curves) and a single integral along each curve.

The wavenumber conservation relations restrict the allowed region

of triad interaction to an open rectangle in m— 2. space such as shown in

Figure 1. The frequency resonance conditions further restrict allowed

interactions to simple curves within the rectangle. If we neglect the

Coriolis frequency f in the dispersion relation (7), the resonance curves

are straight lines whose slope and intercept depend on inodenumber ratios.

With f~O the curves are bent to an extent which depends on the proximity

to the m and 9. axes and on the value of k. Two examples of resonance

curves are illustrated in Figure 1.

The parameter range for the calculations is determined by the region

of validity of the WKB model . We allow frequencies in the range f<w<N /3

where the upper limit may be varied to test for sensitivity of results.

If any member of a wave triad has a frequency greater than the cut—off

value, that triad does not contribute to V. Similarly , we employ a long

wavelength cut—off at 100 km so that the “plane ocean” assumption remains

________ 
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valid.. For satisfactory convergence (— 5%) of the values for V it was

sufficient to retain only modenumbers in a band. of halfwidth 25 centered

about the test wave mod.enumber. That is, triads lying on resonance

curves for which Ici — B I , ci.-y~~~25 were included in the calculations.

Changing the value of the frequency cut—off by 25% typically pro-

duced less than a 5% change in v for frequencies w <l5f. For higher F

frequencies , important local frequency and wavenumber interactions F

(induced diffusion , Section 6) are blocked by the cut—off, and the rates

are diminished. Quantitative results are found up to ~l7f or even higher

for large modenumbers. Changing the low—wavenumber cut—off can also have

a significant effect (— f a c t o r  of 2 ) ,  especially for low modenumbers .

This is again due to the induced d.if~usion mechanism where one triad

member has a small wavenumber . The analysis in Section 6 provides a

semi—quantitative estimate for the importance of this cut—off .

Figure 2 presents a plot of the decay rate against te5t wave

frequency for the GM—T6 PSD (10). Each solid curve is labelled by the

test wave modenumber a. The heavy dashed line represents equality between

decay rate and linear frequency, and therefore distinguishes regions of

weak and strong nonlinearity (below and above the line , respectively).

Since the theory assumes a weakly nonlinear wavefield, little quantitative

reliability can be placed on results above the dashed line . The high

frequency “kink” in the curves is a result of the frequency cut—off at • 
-

21f.

The results show some common trends and. features. For given test

wave frequency, waves with large modenumber (wavenumber) decay most

rapidly : For given modenumber , the higher frequency (wavenumber ) waves

a 

•~~~~~~~~~~~~ _ _
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decay fastest , and there is a low frequency thre:~.old (w~~3f) below which

the decay rate decreases very rapidly with decreasing frequency. These

features are also exhibited in Figure 3 which presents the same results

as Figure 2 except v~ is plotted as a function of’ wavenuniber. At high

frequencies, a common (modenumber independent) k—dependence for the decay

rate is apparent.

It was noted in Section 3 that the exvression (23) for U., is not
r

positive definite: Interactions for which w = ±(~ —w ) (“differencea
reactions~’) have the possibility of giving rise to initial growth of the

test wave amplitude. It is clear that if w <2f, difference reactions are

the 
~~~~ 

type of interactions possible ; therefore Up is most likely to

be negative at these low frequencies. Indeed our results show growth

(negative V~~) for small frequencies , especially at high modenumbers .

This is indicated in Figure 14 which is a contour plot of the rate calcu-

lations. Here the shaded region corresponds to growth , the remainder

decay.

The calculation of the fluctuation—dissipation decay rate 
~~ 

is

essentially the same as for U
p~ and the same cut—off parameters were

used. Numerical estimates of the correlation time t for the “noise”

term F in equation (15) show that tc w
1 

so that the delta correlation

assumption (18 ) is valid in the same region as the weak nonlix~earity

assumption , vp< w .

In Section 3 we saw that if ,ti is an equilibrium PSD for the mode

(k,a) then UF(k ,a) = V (k,a). Similarly , if the wave field is nearly

r in equilibrium , tnen V
B ~F 

— is “small.” An appropriate measure of

_________ _ _ _  ~~~~~ ~.— 
-

~~~~~~~
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relative equilibrium is not V
B 

itself but rather the ratio

1V 3 1
R(k,ci) S —

~
--.— (30)
V
F

which compares the timescale for evolutiun of the spectrum to that for

relaxation of a single mode .

The ratio B is plotted against w for selected a in Figure 5 using

the GM—76 PSD. Apart from a sharp increase in B at low frequencies and

at high modenumbers (associated with V~<0), the small size of R over

such a wide range of w and a is supportive evidence that GM—76 is a

“good” representation of an equilibrium spectrum. Below we will compare

GM—76 with other spectral forms to test the sensitivity of this result.

Olbers [1976] and McComas and Bretherton [1977] have calculated

energy transfer rates for various GM models. They have also determined

the direction of the energy flow by mapping regions of positive and nega-

tive \3. We investigate the effect of the variation of two parameters

in the PSD. Using GM—76 as the basic form for i~ [see equation ( 1 0 ) ] ,

we change the wavenumber slope “p” and the modenumber slope “t.”

A. Wavenumber Slope Change

With the niodenumber slope given by the reference GM—76 value

(t 2) we compute the ratio B for six values of the wavenumber slope.

The results are presented as contours in (w , ci) space in Figure 6.

Regions for which R> .lare designated “non—equilibrium” and shaded to

indicate the sign of v3. Energy flows from regions of negative (decay)
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to positive (growth) VB. When R< .l, contours of R are plotted and

the sign of VB is ignored. The area of this region and. of the region

R< .Ol indicates how much of the spectrum is equilibrium.

-

• 
The GM—76 PSD (p=2) is in equilibrium except for low modenumbers

(a<7) where the action decays and for low frequencies and high rncdenumbers

(w<2.5f , a>7) where the action grows. Decreasing p extends the V
3
>O

region to lower modenumbers and higher frequencies; increasing p has

the oppcsite effect. Overall, GM—76 is closest to equilibrium in the

• high wavenumber region , although the results for smaller slopes are not

very different.

B. Modenwnber Slope Change

Here the procedure is the same as above except that the wavenumber

slope is fixed at the GM—76 value ( p = 2 ) ,  and. the modenumber parameter

t is varied. Figure 7 shows the results in the same format as Figure 6.

Unlike the previous case , as t decreases the growth region is confined

to higher modenumbers while the decay region expands. The GM—76 spectrum

is again more closely in equilibrium for high wavenumbers than the other

spectra , although for 2<t<3 there is little change in the equilibrium

region.

Generally, the equilibrium region a>5 and w >3f , is insensitive

to the slope parameters p and t. However, these parameters strongly

affect the division between regions of growth and decay of the action .

For GM—76 our computations are in agreement wi th  McComas and ~reth er t on

~~dioa ting  that action flows from c~~~5 into ~~~ 10 and w~~~3f.

- 
‘
~~~~~~~~~~~
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6. SPECIAL TRANSFER ~~CHANISMS

McComas and Bretherton [1977] have emphasized that certain classes

of triads have significant roles in determining transfer rates. In

this section we shall discuss quantitatively the importance of these

mechanisms for both the Langevin and Boltzmann rate constants.

We begin with a discussion of the mechanisms called ir.duced diffusion

and elastic scattering by McComas and Bretherton. We discuss these

together as limiting case I (LCI). As previously, we let (k,a) be the

test wave; then LCI corresponds to the triad conditions

w
1
(m)

m k>>9.. (31)

In this limiting case the G coefficients have simple forms, and we

may re—write (21), (23), and. (214b) as

[w2(k)—f2] w2(k)-f
2 A

= .-
~~

-. BN a 

k2 ~~ w (k) ~(k,a)

x J d2Z ~~~~~~~~~~~~ 2 V
k k 6[w (k) - w (k) ± w~~~~

) ] .
Z<<k a, ~~ + I

( 3 2 )

The index “x ” is used to represent “P” , “F” , or “B” where

• • •.~~ - ~~~~~- • ~— ~~~~~~ 
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:~ (k)
— o c &

2 D

w (k)-f
a

N ~ (k)

2
I

(33 )

From (6) and ( 9 )  it is seen that A r is proportional to wave action .

The quant ity Vk9.k is the overlap 
integral of vertical niodefunctions

evaluated in Appendix A.

Ejuations (32 ) and ( 3 3 )  show that for LEI triads , the equil ibrium

cundi t ion = 0 corresponds to

( 3~ )

or that A be independent of modenuxnber (equipartition of action).

• (For the case of induced diffusion this was noted by McCornas and Bretherton

1977]). The results (32 ) and (314) do not require either the WKB or

Boussinesq approximations . The W~~ dispersion relation ( 7 )  yiei~ s for

( 3 k )

• 
~(k ,o) a~~

• except near the inertial frequency which is precisely the form of ~~~~~~~~~~~

(:0) in t h i 3  lomain and for  ~~~~ The numerical calculations

- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~
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in the previous section show equilibrium in this same region. We shall

show in the following that this is because LCI triads dominate the wave

interactions.

The integral Vk Z k  appearing in (32 ) is evaluated in the WKB

approximation in Appendix A. From this we see that

U [
~ 

+ ~ + 
~ 

] . (35 )
k9.k a—B—y a~B—y cz—B~y

• (For our actual calculations we use the more accurate form given in

the Appendix.) The terms ~ = ±(a—y) when y~c~ >B correspond to induced

• diff usion ( I D ) .  The term ~~ = 
~~
+‘

~
- corresponds to elastic scattering

(Es).

Analytic evaluation of (32 ) for these two cases gives the expressions

Induced d.iffusion:

V (a-¼)3(B-¼)
2w

- .i 6 1 4 x lcf~
14 a

N 

~~~~~~ 

itu 

)

6 2 2

(a—¼)fw
B = 

a ; (36)
(w —fa

Elastic scattering:

V
= 1.0 x 10~~ 

°
N 1rw 3
0 ,

~~~2N0

( B— ¼ ) 2  (~~T )
+ 

3/2 irw 3 ’
6 (8 +9 ) (w

1
—f 2 ) 1—

I

_______________ _____ 
• • ____ .__ ... . . • _._ • _ . ••• _ ••ia,•s ~~~~~~ - : I t ~~:’~: 
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f~~~~2

= + (a-¼) 
[1 

+ 

w~~f~ ] 

(37 )

The sum “ + , — “ above represent s the sum over the two cases

w = w (k)±f . (38)

For the analytic evaluation of (36) and (~ 7) the upper limit of the

integral over 2. in (32 ) has been taken to be infinity since this has

little effect on the result . The numerical calculations reported in

Section 5 use a lower limit 9. . = 2v/(lOOkm). This results in themm

multiplication of expressions (36) and (37 ) by a factor

1 — + tan~~(i . N / ~.vf)].

In Figure 8 we compare the ID expression (36 ) ( dashed curve )

with the calculated numerical results (solid curve ) for V~ (for this

comparison the 9.—integral cut—off was included). It is evident that

except for f<w<3f , the ID mechanism provides a ~~~~ approximation

for ~~~ and that u~ may be easily calculated from the analytic expression

(36) .

- In Figure 9 we compare the ES (36) and ID (39 ) expressions for

v~. It is seen that ES is much less important than ED.

The parametric subharmonic instability (PSI) mechanism of ricCornas

• and Bretherton [1977] corresponds to a large scale double frequency wave

L

~ 

.=-~~~~ -~~~~- 
—

~~ , ~ ~~~~~~~~~~~~
- 

~~~
__
~~~~_:i

_
~~~—— - - —  ~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~
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interacting with two smaller scale waves with nearly equal frequencies.

In our notation, this corresponds to

(39 )

Since the ID mechanism successfully accounts for the interactions with

w~~~ 3f , we expect that , at most , PSI could be important in the region

w ~~2f. For this case we find
a

V~ V
F 

( 140)

and an analytic evaluation is again possible. In contrast to the ID

and ES derivations a finite upper limit must be imposed on the 2.—wavenumber

integration for convergence of the approximat e expressions . Wi th the

choice 2. = k/5 the PSI limit for V was one to two orders of magnitudemax F

less than the full computation for the range f<w~<2f. Simulation of the

PSI conditions (39 ) in the full numerical code has shown that , although

the frequency and modenumber limiting conditions were both well satisfied

by the impcrtant triads, the wavenu.mber condition was ~~~~~~~~~ We conclude

that for f<w <2f the important triads have comparable wavenumbers .

.1

— 
~~d. . . •. .~ - . 
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Choosing 9. = k, a rather crude approximation for v~ in the

range f~w~~2f can be derived which gives the correct order of magnitude:

v 2 5
~
’2

— — 3 . 5  ( l O Y
T 

14 — [Q  — tan~~Q]

kBN
(141)

Values calculated from (141) are shown in Figure 9.

The conclusions of this section are that for wa>3f and a~ 5, the

ID mechanism , expressed by (36~ provides a good description of relaxation

within the internal wave field.. The ES and PSI mechanisms are never of

much importance.

Equation (32), its analytic solution , and the good agreement with

the full numerical calculation provide the explanation for the conclusion

that the GM—76 spectrum is in equilibrium in the domain Wa>3f and

a>5. Outside this domain the spectrum does not seem to be in equilibrium.

I

.k

1.1. - • . . . . . • - .
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7. ~~ERGY FLOW

Three—wave interactions are only one of the many processes which

contribute to the overall energy balance in the ocean. To understand

the measured internal wave energy spectrum requires a quantitative measure

of flow rates between the various sources and sinks. Here we obtain an

estimate of the energy flow rate through the non—equilibrium region of

GM—76 which also indicates the energy requirements to maintain the

spectrum .

The mean energy per unit area E(k,a) for the test wave is [I, eq. 2.19]

E(k,a) = w (k) . (142)

The flow rate is obtained by taking the time derivative of (142) using

equations (214), (6) and ( 9 ) :

22 2wdE(k,a) ~41T a
dt = Z w 2— f 2 V

B ~
(~~,a) P i ~~B . (143)

Since the radiative transfer equation conserves total energy, the

net energy flow from the region V
B
<O is equal to the flow into VB>O • 

We

compute the flow from the negative region by integrating (143) over this

domain of k ,a space: -

( -)  dE~~~ dE(k,a) fr

dt ~ dt ~~~~~~~~ ~~ 
. (1414)

a

V < O
B 

A ____  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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The calculated partial rates dE~~~/dt are given in table 1 for

modenumbers between a l  and a6. For the first 5 modenumbers they are

comparable, while for a 6  the rate has decreased by nearly a factor of

2, and the contributions from a>6 (not shown) are much smaller. Except

for a=l, the main contribution to the k sum in (414) peaks near Wa 2.2f,

independent of a. Although the peak is not sharp it does suggest that the

flow through the spectrum to smaller frequencies is weak: The major flow

is from low to high modenumbers. The net energy flow rate from the region

of negative VB sums to dE~~~ /dt 6.14 (io~~
14 
W/m

2
. for as6, and we believe

that this represents only a slight underestimate of the total rate.

Olbers [1976] has evaluated the transfer rat e to high modenumbers

for the GM—75 spectrum and found it to be 3 (ioY 3 Wm 2
, significantly

larger than our 314—76 rate. McComas and Bretherton [1977], however,

have noted a sensitivity of results to spectral shape as is reflected

in our Figures 6 and 7. Thus the validity of computed transfer rates

certainly depends on the precision to which the spectrum is known.

‘ a
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APPENDIX A

OVERLAP INTEGRALS FOR EXPONENTIAL PROFILE

The expaicit  form of the coupling coefficients 0 in the equations

of motion ~~ is given in the appendix of I. The only V~ isHl~ profile

dependent terms in these coefficients are the “overlap integrals”:

U = ~~ ~ pW ’ W ’ W ’ dz ,k9.m p xa Z8 my
0 —n

= f pW~~W 9.8W d Z  , A )

where the mod.efunctions W(z) are solutions of (4) with the normalizatior.

~~~ 

(N 2— f 2 )p Wk W
kB dZ = . (A2 )

The Boussinesq approximation entails setting p = p = p ( z = O )  in these

integrals as well as in (4). Since typically p varies by only — . 3% over

the depth of the ocean, this approximation has little effect on the values

of the overlap integrals (Al ) .

In this approximation the eigenvalue problem (14) becomes

W
~~~

+ Q
~~
(Z) Wk O ,

2 2N (z)—w

2 2 ( A 3 )  

-- - ., - . . -- - - - - - -



if we restrict ourselves to the region w<<N0 
the integral

can be neglected. Qualitatively this can be seen by considering the

constant profile model

N = B < z < 0 (A4 )

for which

V
kZm 

— 

~~~~~~~

k 1 
~ +6 }

9.m N 3v’~~ 
a ~~~~~~ ~~~~~~ ~~~~~~

0

= -.~~~~ — . (As )

From the form of the coupling coefficients [I , equation ( A . 2 ) ] ,  it is

seen that the ratio of the ~i to the V containing terms is ~jven by

(k/Q)2 ( w / N ) 2 << 1.

This result is confirmed quantitatively by numerical evaluation of the

overlap integrals for the exponential profile.

To compute VkZm~ 
it is suff ic ient  to use the W~~ solutions of ( A s )

correct to first order in r~ = w/N :

.
~

L~~. — 
- _~~~~~~ - - -  -- -- ~~~~~~~

_ _  :_ — - - 
_
~~~~

_
~~~~

__~~~i
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= 
[1— ~~~~~( k ) ]  

e~~~
2B 

sin[~ (:) + r/ ~~ ,

where

1/2
BQ~~(O)dka + _ ~ :_. 

‘

2

1 _________ N( z )  = — ________

B -— — — n  02 a

N 11

N
~ ( z )  = A ° 

. (.2~6)

The WKB overlap integral is formed by d i ffe ren t ia t ing  W while keeping
ka - -—z / 2 3 . . .e fixed , and. substi tuting ~ntc ( A ± ) .  The result is

U kZ 
= 

~~ a
d
i8

d
my 

{1
k 

÷ + ( AT)

where

(— l)~~~~~ 
~ 

[C~ (a) sinq — S2(-~) cosqi . (A3)

~-iere S2 and C2 are Fresnel integrals [Ahr ’~r~oi~itz and ~~~~~~~~~~~~~ l96~ ], and

i is the dimensionless vertical wavenumber mismatch at the surface

= BIQk 
(0) - Q~~

(0) - 
~my~ °~~ 

( t 9 ) I

— - 
- 

- -- —-- -~~~~~~~-- - - - - - - - -~~~~~~~~~~ --~~~~~~ 
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To first order in ri this can be written as

q = ~Ia— ~—y + + 
~~~~~ 

(flaA a_fl
~

A
~

_flyA y ) I . (Ala)

The function I~ is peaked about zero vertical wavenumber mismatch.

This gives an approximate vertical wavenumber conservation law analogous

to that in (A5) for the constant N model. Comparing (AT ) with (AS )

further shows that dk plays the role of effective vertical wavenumber.

k .
A simple functional n t  to I~ is given by

I~~~(q )  = ÷ e
_aQ 

cos(bq)(_l)~~~~~ , (All)

where a = .0)453 and b = .37143. It involves an error of less than 5%

for Osq< 14 .

To facilitate the evaluation of the Langevin decay rates we approxi-

mate the function ~~ with a delta function, thereby enabling one of the

modenumber summations in (22) and. (25) to be replaced by a trivial integral.

Using expression (All) it can be readily ver i f ied  that the replacement

—i-- 6(q) (Al2 )Zm

is valid. .~ 
-

Numerical computation of the overlap integrals using the exact

Bessel fmotion solutions [ J ~irre-~t and Mu nk , 1972] show that the accuracy

cf ( A T )  decreases with increasing frequencies reaching ~~ at w / N 0 - .25

(providing the modenumbers are creater than one). For q = 0 ~he

- -~~~~~ --- ---- ~~~ - -- -~~~~~~~- -- --_



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - -
~~~~~~~~~~~

- - 

~~~~~~~ — - - -

—52—

are typically ess than 20% of the B2vk~~
; however , as q increases

u decreases rapidly (see All) while ~ is relatively constant.

~~

- L

L:1 
_  _ _ _ _ _ _ _ _ _ _  
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APPENDIX B

ALTERNAT IVE EXPRESSIONS FOR RELAXATION RATES

Equations (21) and (23 )  can be re—written in a form which makes

transparent their relationship both to one another and to the familiar

radiative transport equation of Olbers [1976], McComas and Br ezhervon

[1977], and Davidson [1972].

To do this we use the hamiltonian coupling coefficients r,(k;L ,m)

defined in I [Appendix A] and also the wave action variables (6’ . In

terms of these the relaxation rates are

<
~ ka> v~~~~,a)  = ~ { 4 r1

(k;z,m)~
2 

6k~~~m
6(wa

_w
8
_w
y)

+ r1
(m;k ,z)1

2 
6i,+~ rn 6 ( w a

+
~~~~ 

)} <J~~~> <J1,11> (Bl )

<J . > V~~(k ,c t )  = Sir ~ { 4 F
1
(k;z,m)j

2 6k_~ _m~
(w a

_
~~

_w
y

)
- -.

~ + r
1(rn;z ,k)1

2 
ôk+~~rn5(~~

+u
~
-w )

x kJ >~<j > )< J  > } . (B2 )
Z~ my ka

Substitution of these expressions into (2 )4 b ) yields the usual expression .

• ‘

~~ -
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The transport equation (29 ) can also be written in terms of action

variables

dt 
<
~ka

> = 2V
F
(k,a) 

~~~ 
— <

~ka
> 1 (B 3)

where is the equilibrium action. Equation (B3) can be generalized

[Olbers , 1976] to include the effects of a mesoscale current U(x) by

writing J
k

(x ) , and interpreting as

d ~ • 3 . 3
. .+ ) ( • .  + k ’~~~ ,

~~ 

=

~~~~~~~

- 
, i~

= _
~~~ , Q w (k)+k U(X) . (BS )

F ‘

,

__________________ ~~~~~~ 
_
~~~~j ~~~~~~~~~~~~~ -~~~~~ - - - 
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- - ~~~~~~~~~~~
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Table 1

Energy flow rates (Wm’2) from low modenumbers.

dE ~ -)

a — ~~ x l O ~

1 1.1

2 1.3

3 1.3 -

5 1.1

5 1.0

6 0.6

dE dE~~
dt = = — 6.S (lO Y~

5 Wm 2 

~~~~~~~~~~ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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FIGUR E CAPTIONS

Fi gure 1 Resonance curves for dispersion relation (7). Dashed

curves are for f = 0.

Fi gure 2 Decay rate versus test wave frequency. Curves are labelled

by modenumber. Dashed curve represents Vp =

is used.

Fi gure 3 Decay rate versus wavenumber for GM—76.

Figure 4 Contour s of vp/N for GM—76 . The shaded. region indicates

negative v~ corresponding to test wave growth.

Fi gure 5 Comparison of 
~
,
B with VF. The quantity R [equation (30)]

is plot ted against test wave frequency for selected mode—

number. GM-76.

F ia ’ure 6 Comparative equilibria for different wavenumber slopes p

of PSD ( 10) . GM—76 uses p = 2. Non—equilibrium regions

(R>O.l) are shaded and the sign of UB is given . Otherwise

contours of B are drawn: Dashed contours denote B = 10 2
,

dots denote R = l0~~.

-. T Figure 7 Comparative equilibria for different modenumber slopes t

of PSD (10). 014—76 uses t = 2.
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Fi gure 8 Comparison between the dominant induced diffusion transfer

mechanism [equation ( 3 6 ) ]  and the full numerical calculation

of V~ /N0 . Curves are labelled by modenumber .

Fi gure 9 Comparison of contributions to V~~I / N 0 from special transfer

mechanisms . Analytic expressions for induced diffusion

[equation (36) ], elastic scattering [equation

(37 ) ] and modified. parametric subharmonic

instability [equation (Si) — . . — ‘ ] are evaluated.

Curves are labelled by modenumbers.
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